
Hyperparamter search and experiment

management

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Getting the most out of your models

 You’ve come far since the beginning of this course

 You can now train image classification models, timeseries forecasting models, text-

classification models, and even generative models for images!

 The flexibility of neural networks, however, is also one of their main drawbacks: there are

many hyperparameters to tweak

 How many layers should you stack?

 How many units or filters should go in each layer?

 Should you use ReLU as an activation or a different function?

 Should you use BatchNormalization after a given layer?

 How many dropouts should you use?

 These architecture-level parameters which can be set in advance are called

hyperparameters to distinguish them from the parameters of a model, which are learned via

backpropagation

2

1. Hyperparamter search – Grid and randomized

 One option is to simply try many combinations of hyperparameters and see

which one works best on the validation set (or use 𝐾-fold cross-validation)

 We can use Grid Search or Randomized Search to explore the hyperparameter space

 When training is slow, however (e.g., for more complex problems with larger datasets), this

approach will only explore a tiny portion of the hyperparameter space

3

× 1,000

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-

cfa76de27c6b

embarrassingly parallel

https://towardsdatascience.com/gridsearch-vs-randomizedsearch-vs-bayesiansearch-cfa76de27c6b
https://en.wikipedia.org/wiki/Embarrassingly_parallel

Hyperparamter search

 You can alleviate this problem by designing the search process

 First run a quick random search using wide ranges of hyperparameter values, then run

another search using smaller ranges of values centered on the best ones found during the

first run, and so on

4

 The core idea is simple: when a region of space turns

out to be good, it should be exploited. Such techniques

lead to much better solutions in much less time

 However, we should also balance exploitation (focusing

on known "good" regions) and exploration (testing new

regions)

Hyperparamter search

 The key to hyperparamter search is the next set of hyperparameters to evaluate.

But it is challenging considering the fact that

1. The search space is typically made up of discrete decisions and thus isn’t continuous or

differentiable. Hence, you typically can’t do gradient descent in search space.

2. Computing the feedback signal of this optimization process can thus be extremely

expensive: it requires creating and training a new model from scratch on your dataset

3. The feedback signal may be noisy: if a training run performs 0.2% better, is that because

of a better model configuration or because you got lucky with the initial weight values?

5

Hyperparamter search as an optimization problem

6

Machine/Deep Learning ≈ find a function f

Hyperparamter search as Meta Learning

“cat”𝑓 =Dog-Cat

Classification

1. Choose a model 𝑓𝜃
2. Choose a quality measure

(objective function, loss

function) for fitting

3. Optimization (fitting) to

chose best 𝜃

Machine learning Meta learning

Sample point Each model

Feature Hyperparameter

Loss function of sample point Each model’s performance

Hyperparamter search as an optimization problem

7

1. Choose a set of hyperparameters (Choose search space)

2. Fit model to your training data, and measure performance on the validation data

3. Choose the next set of hyperparameters (Automatically by search strategy)

4. Repeat

5. Eventually, measure performance on a test data

Hyperparamter search - Bayesian optimization

 Treat it as an optimization problem: hyperparameter search algorithms

 Bayesian optimization, gradient-based, evolutionary optimization …

 In Bayesian optimization, we train a function called the surrogate function to

approximate the objective function

 Once we have a surrogate model, we can sample a new hyperparameter combination for

evaluation

 To proceed with the sampling, we need to design another function, called the acquisition

function, based on the surrogate function. This function is used to pick the most promising

model to train and evaluate

8

https://distill.pub/2020/bayesian-optimization/
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://cloud.google.com/blog/products/ai-machine-learning/hyperparameter-tuning-cloud-machine-learning-engine-using-bayesian-optimization

Hyperparamter search - Bayesian optimization

1. We choose a surrogate model for the true function 𝐹 and define its prior

2. Given the set of observations, use the Bayes rule to obtain the posterior

3. Use an acquisition function 𝛼(𝑥), which is a function of the posterior, to

decide the next sample point argmax 𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥​𝛼(𝑥)

4. Add newly sampled data to the set of observations and go to step 2 till

convergence or budget elapses

9

Hyperparamter search - Bayesian optimization

 The surrogate function is often chosen as Gaussian Process (GP) that contains

𝜇 and 𝜎 for a set of 𝑥

 Some popular acquisition functions are below:

 Probability of Improvement (PI)

 𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥(𝑃(𝐹(𝑥) ≥ (𝐹(𝑥+ + 𝜀))) where 𝑥+ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖𝜖𝑥1:𝑡𝐹(𝑥𝑖)

 Expected Improvement (EI)

 𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝐸(max{0, ℎ𝑡+1 𝑥 − 𝐹(𝑥+)}|𝐷𝑡) where 𝐷𝑡 is the past training data and

ℎ𝑡+1 𝑥 is the posterior mean of the surrogate

 Thompson Sampling

 𝐹′ = 𝑆𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑜𝑚 𝑃𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 → 𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥(𝐹
′(𝑥))

 Bayesian optimization tries to make smart decisions about where to sample

next, thereby reducing the number of evaluations needed. The acquisition

functions try to balance the trade-off between exploration and exploitation!
10

https://stats.stackexchange.com/questions/314513/gaussian-process-prior

Hyperparamter search

 In practice, experienced machine learning engineers build intuition over time

as to what works and what doesn’t when it comes to hyperparamter search

 We need to be smart about designing the right search space. We still need to handpick

experiment configurations that have the potential to yield good metrics

 Hyperparameter optimization is a powerful technique that is an absolute

requirement for getting to state-of-the-art models on any task

 Think about it: once upon a time, people handcrafted the features that went into shallow

machine-learning models. Now, deep learning automates the task of hierarchical feature

engineering—features are learned using a feedback signal, not hand-tuned!

 In the same way, you shouldn’t handcraft your model architectures; you should optimize

them in a principled way!

11

https://github.com/google-research/tuning_playbook

Automatically hyperparamter search to AutoML

 We can also be far more ambitious and attempt to generate the model

architecture itself from scratch, with as few constraints as possible

12

https://www.manning.com/books/automated-

machine-learning-in-action

 For example, Google has used an evolutionary

approach, not just to search for

hyperparameters but also to look for the best

neural network architecture for the problem;

their AutoML suite is already available as a

cloud service

 In the future, entire end-to-end machine

learning pipelines will be automatically

generated rather than be handcrafted by

engineer artisans. This is called automated

machine learning, or AutoML

https://www.manning.com/books/automated-machine-learning-in-action
https://cloud.google.com/automl/

2. Automatic machine learning

 Automated machine learning (AutoML) is the process of automating the tasks

of applying machine learning to real-world problems

13

 Meta-learning and automatic hyperparameter tuning are two key components

 However, AutoML potentially includes every stage from beginning with a raw dataset to

building a machine learning model ready for deployment (data preprocessing, feature

engineering, model selection and hyperparameter tuning, model ensembling)

https://en.wikipedia.org/wiki/Automated_machine_learning

Automatic machine learning

 We still have a lot of challenges and limitations:

 The automation of collecting and cleaning data — AutoML still requires people to collect,

clean, and label data. These processes are often more complicated in practice than the design

of ML algorithms, and, for now, they still cannot be automated. For AutoML to work today,

it has to be given a clear task and objective with a high-quality dataset.

 The costs of selecting and tuning the AutoML algorithm—The “no free lunch” theorem tells

us that there is no omnipotent AutoML algorithm that fits any hyperparameter tuning

problem. The effort you save on selecting and tuning an ML algorithm may be amortized or

even outweighed by the effort you need to put into selecting the AutoML algorithm

 Resource costs — AutoML is a relatively costly process in terms of both time and

computational resources. Existing AutoML systems often need to try more hyperparameters

than human experts to achieve comparable results

14

Automatic machine learning

 Users with more ML expertise can achieve more personalized solutions

to meet their requirements using lower-level libraries

15
https://www.manning.com/books/automated-machine-learning-in-action

https://www.manning.com/books/automated-machine-learning-in-action

Automatic machine learning - AutoKeras

 The task APIs help you generate an end-to-end deep learning solution for a

target ML task, such as image classification

16

 These are the most straightforward AutoKeras

APIs because they enable you to achieve the

desired ML solution with only one step:

feeding in the data. Four different task APIs

support six different tasks in the latest release

of AutoKeras, including classification and

regression for image and text data

https://autokeras.com/tutorial/overview/

Automatic machine learning - AutoKeras

 Real-world problems can have multiple inputs or outputs. For example, we can

use both visual and acoustic information to detect actions in a video. We may

also want to predict multiple outputs, such as using the consumption records of

customers to predict their shopping interests and income levels

 To address these tasks, we can use AutoKeras’s IO API

 The search space is usually tailored to different tasks. AutoKeras provides a default search

space for each task to save you effort on search space design

 To customize the search space for personalized use cases, you need to use the functional API

17

https://autokeras.com/tutorial/multi/

Automatic machine learning - AutoKeras

 The functional API is mainly for advanced users who want to tailor the search

space to their needs

 It allows us to build a deep learning pipeline by wiring some AutoKeras building blocks

 A building block often represents a specific deep learning model composed of multiple

Keras layers such as a CNN, meaning that we don’t have to specify these models layer by

layer. The search space of the hyperparameters for each block is also designed and set up

for us so that we can focus on the hyperparameters that concern us without worrying about

the rest

18

https://autokeras.com/tutorial/customized/

Automatic machine learning - AutoKeras

 Automated hyperparameter tuning - The model type and preprocessing methods are chosen.

We want to tune the hyperparameters of each specified ML component in the pipeline. The

search space will include only the relevant hyperparameters for each fixed component

19

 Automated pipeline search — In some

situations, we may not know which

model or data preparation method to

adopt ahead of time. In this case, one

or more of the AutoML blocks will

contain multiple components. To do

this, we can include blocks for each

model architecture. The preprocessing

method can be either fixed or selected

and tuned along with the model

https://autokeras.com/block/#imageblock

AutoML with a fully customized search space - KerasTuner

 KerasTuner is a library for selecting and tuning ML models. Besides the tasks

that can be solved by AutoKeras, it tackles the following three scenarios that

are difficult or introduce an extra burden for AutoKeras to handle:

1. Pipelines in the search space have different training and evaluation strategies, such as

shallow models implemented with scikit-learn and deep learning models implemented

with TensorFlow Keras

2. You need to perform tasks other than supervised learning tasks

3. There are no built-in AutoML blocks in AutoKeras that are appropriate for use

20

AutoML with a fully customized search space

21

3. Experiment Management

22

Experiment Management

 As you run numerous experiments to refine your model, it’s easy to lose track

of code, hyperparameters, and artifacts. Model iteration can lead to lots of

complexity and messiness

 For example, you could be monitoring the learning rate’s impact on your model’s

performance metric. With multiple model runs, how will you monitor the impact of the

hyperparameter?

 Experiment management refers to tools and processes that help us keep track of code,

model parameters, and data sets that are iterated on during the model development

lifecycle

 A low-tech way would be to manually track the results of all model runs in a spreadsheet.

Without great attention to detail, this can quickly spiral into a messy or incomplete artifact.

Dedicated experiment management platforms are a remedy to this issue

23

Experiment Management

 There are several solutions here:

 TensorBoard: A non-exclusive Google solution effective at one-off experiment tracking. It

is difficult to manage many experiments

 MLflow: A non-exclusive Databricks project that includes model packaging and more, in

addition to experiment management. It must be self-hosted

 Weights and Biases: An easy-to-use solution free for personal and academic projects!

Logging starts simply

 Other options include Neptune AI, Comet, Determined AI all of which have

solid experiment-tracking options

24

https://www.tensorflow.org/tensorboard
https://mlflow.org/
https://wandb.ai/site
https://neptune.ai/
https://www.comet.com/site/
https://determined.ai/

Experiment Management

 Many of these platforms also offer intelligent hyperparameter optimization,

which allows us to control the cost of searching for the right parameters for a

model

 For example, Weights and Biases has a product called Sweeps that helps with

hyperparameter optimization. It's best to have it as part of your regular ML training tool;

there's no need for a dedicated tool

 With a YAML file specification, we can specify a hyperparameter optimization job and

perform a “sweep,” during which W&B sends parameter settings to individual “agents”

(our machines) and compares the performance

25

https://docs.wandb.ai/guides/sweeps/

Conclusion

 Hyperparameter selection is crucial for success since they heavily influence the

behavior of the learned model

 Automatic hyperparameter tuning is an area that studies how to efficiently search the space

of possible hyperparameters

 Today, AutoML is still in its early days, and it doesn’t scale to large problems

 But when AutoML becomes mature enough for widespread adoption, the jobs of machine

learning engineers will move up the value-creation chain

 They will begin to put much more effort into data curation, crafting complex loss functions

that truly reflect business goals, as well as understanding how their models impact the

digital ecosystems in which they’re deployed

26

References

[1] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Chapter 11,19

[2] Deep learning with Python, 2nd Edition Chapter 13

[3] Automated Machine Learning in Action Chapter 1 and Chapter 4

[4] https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php Lecture 15

27

https://www.oreilly.com/library/view/hands-on-machine-learning/9781098125967/
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/automated-machine-learning-in-action
https://speech.ee.ntu.edu.tw/~hylee/ml/2022-spring.php

Appendix

28

Resources

 Automatic machine learning

 https://en.wikipedia.org/wiki/Automated_machine_learning

 https://en.wikipedia.org/wiki/Neural_architecture_search

 https://en.wikipedia.org/wiki/Hyperparameter_optimization

 https://distill.pub/2020/bayesian-optimization/

 https://www.automl.org/book/

 AutoML

 PyCaret

 Neural network inference

 AutoGlon

 h2o-3

 Auto-sklearn

29

https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://github.com/microsoft/nni
https://distill.pub/2020/bayesian-optimization/
https://www.automl.org/book/
https://pycaret.org/
https://github.com/microsoft/nni
https://github.com/awslabs/autogluon
https://github.com/h2oai/h2o-3
https://automl.github.io/auto-sklearn/master/

Resources

 Hyperparameter tuning

 Optuna

 hyperopt

 Talos

 Topt

 Scikit-Optimize

 Sklearn-Deap

 SigOpt

 Ray Tune

 Data/model management

 https://fullstackdeeplearning.com/course/2022/lecture-2-development-infrastructure-and-

tooling/

 https://fullstackdeeplearning.com/spring2021/lecture-6/

30

https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/hyperopt/hyperopt
https://github.com/EpistasisLab/tpot
https://scikit-optimize.github.io/stable/
https://github.com/rsteca/sklearn-deap
https://github.com/sigopt/sigopt-server
https://docs.ray.io/en/master/tune/index.html
https://fullstackdeeplearning.com/course/2022/lecture-2-development-infrastructure-and-tooling/
https://fullstackdeeplearning.com/spring2021/lecture-6/

Resources

 Guide

 Empirical guidelines

 Deep dive guidelines

 Service

 https://sigopt.com/

 https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-tuning

 https://bigml.com/api/optimls

 Meta learning

 A Survey of Deep Meta-Learning

 AutoAugment: Learning Augmentation Policies from Data

 Learning an Explicit Mapping For Sample Weighting

 Learning to learn by gradient descent by gradient descent

31

https://fullstackdeeplearning.com/spring2021/lecture-7/
https://github.com/google-research/tuning_playbook
https://sigopt.com/
https://cloud.google.com/ai-platform/training/docs/using-hyperparameter-tuning
https://bigml.com/api/optimls
https://arxiv.org/abs/2010.03522
https://arxiv.org/abs/1805.09501
https://arxiv.org/abs/1902.07379
https://arxiv.org/abs/1606.04474

Rethinking about deep learning

 In deep learning, everything is a vector—that is to say, everything is a point in

a geometric space.

 Model inputs (text, images, and so on) and targets are first vectorized— turned into an

initial input vector space and target vector space. Each layer in a deep learning model

operates one simple geometric transformation on the data that goes through it. Together,

the chain of layers in the model forms one complex geometric transformation, broken

down into a series of simple ones. This complex transformation attempts to map the input

space to the target space, one point at a time.

 This transformation is parameterized by the weights of the layers, which are iteratively

updated based on how well the model is currently performing. A key characteristic of this

geometric transformation is that it must be differentiable, which is required in order for us

to be able to learn its parameters via gradient descent. Intuitively, this means the geometric

morphing from inputs to outputs must be smooth and continuous—a significant constraint

32

Rethinking about deep learning

 The entire process of applying this complex geometric transformation to the input data can

be visualized in 3D by imagining a person trying to uncrumple a paper ball: the crumpled

paper ball is the manifold of the input data that the model starts with. Each movement

operated by the person on the paper ball is similar to a simple geometric transformation

operated by one layer. The full uncrumpling gesture sequence is the complex

transformation of the entire model. Deep learning models are mathematical machines for

uncrumpling complicated manifolds of highdimensional data

 That’s the magic of deep learning: turning meaning into vectors, then into geometric spaces,

and then incrementally learning complex geometric transformations that map one space to

another. All you need are spaces of sufficiently high dimensionality in order to capture the

full scope of the relationships found in the original data

33

Rethinking about deep learning

 The whole process hinges on a single core idea: that meaning is derived from the pairwise

relationship between things (between words in a language, between pixels in an image, and

so on) and that these relationships can be captured by a distance function. But note that

whether the brain also implements meaning via geometric spaces is an entirely separate

question. Vector spaces are efficient to work with from a computational standpoint, but

different data structures for intelligence can easily be envisioned—in particular, graphs.

 Neural networks initially emerged from the idea of using graphs as a way to encode

meaning, which is why they’re named neural networks; the surrounding field of research

used to be called connectionism. Nowadays the name “neural network” exists purely for

historical reasons—it’s an extremely misleading name because they’re neither neural nor

networks. In particular, neural networks have hardly anything to do with the brain. A more

appropriate name would have been layered representations learning or hierarchical

representations learning, or maybe even deep differentiable models or chained geometric

transforms, to emphasize the fact that continuous geometric space manipulation is at their

core
34

Rethinking about deep learning

 deep learning model is just a chain of simple, continuous geometric

transformations mapping one vector space into another. All it can do is map

one data manifold 𝑋 into another manifold 𝑌, assuming the existence of a

learnable continuous transform from 𝑋 to 𝑌. A deep learning model can be

interpreted as a kind of program, but, inversely, most programs can’t be

expressed as deep learning models

 For most tasks, either there exists no corresponding neural network of

reasonable size that solves the task or, even if one exists, it may not be

learnable : the corresponding geometric transform may be far too complex, or

there may not be appropriate data available to learn it

35

Compute Hardware

 https://lambdalabs.com/gpu-benchmarks

 https://www.aime.info/blog/en/deep-learning-gpu-benchmarks-2022/

36

https://lambdalabs.com/gpu-benchmarks
https://www.aime.info/blog/en/deep-learning-gpu-benchmarks-2022/

Compute Hardware

 https://fullstackdeeplearning.com/cloud-gpus/

 https://github.com/the-full-stack/website

 Some tips on on-prem vs. cloud use:

 It can be useful to have your own GPU machine to shift your mindset from minimizing

cost to maximizing utility.

 To truly scale-out experiments, you should probably just use the most expensive machines

in the least expensive cloud.

 TPUs are worth experimenting with for large-scale training, given their performance.

 Lambda Labs is a sponsor, and we highly encourage looking at them for on-prem and

cloud GPU use!

37

https://fullstackdeeplearning.com/cloud-gpus/
https://github.com/the-full-stack/website

38

 Meta learning is one of the key component behind AutoML

What is Meta Learning?

cat dog

cat

𝑓∗

𝐹

Testing

Training Examples

classifier

function

input

output

Learning

algorithm

Learned from data

Hand-crafted

Can we learn this function?

39

Review: Gradient descent

𝜽𝟎 𝜽′

gradient

Init

Compute

Gradient

Update

Training

Data

𝜽′′

Compute

Gradient

Update

Training

Data

𝜽∗

Network

Structure

Gradient

Descent

(Function 𝐹)

𝜙

gradient

𝜙

40
https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx

MAMLNAS

https://speech.ee.ntu.edu.tw/~hylee/ml/ml2021-course-data/meta_v3.pptx

Meta learning – Step 1

 What is learnable in a learning algorithm?

cat dog

cat

𝑓∗

𝐹

Testing

𝜙: learnable components

Network Architecture,

Initial Parameters,

Learning Rate,

……

𝐹𝜙
Training Examples

classifier

Deep

Learning

Categorize meta learning

based on what is learnable

Component

41

 Define loss function for learning algorithm 𝐹𝜙

 Sample tasks from training tasks (Analog of training sample

in supervised learning)

apple orange apple orange

Train Test

Task 2

Car & Bike

Meta learning – Step 2

Train Test

Task 1
Apple &

Orange
Training

Tasks

bike carbike car

𝐿 𝜙
𝐿 𝜙

42

Meta learning – Step 2

43

Task 1

𝑙1

apple orange

apple orange

𝐹𝜙

prediction

Training

Examples

Testing

Examples

Compute

difference apple orange apple orange

apple orange apple orange

Cross-entropy

Ground Truth

Cross-entropy

𝑓𝜽𝟏∗

𝑓𝜽𝟏∗ 𝑓𝜽𝟏∗

Meta learning – Step 2

44

Task 1

𝑙1

apple orange

apple orange

𝐹𝜙

𝐿 𝜙 = 𝑙1 + 𝑙2Total loss: (sum over all the

training tasks)

prediction

Training

Examples

Testing

Examples

𝑙2

𝐹𝜙

prediction

Testing

Examples

Task 2

bike car

bike car

𝑓𝜽𝟏∗ 𝑓𝜽𝟐∗

Meta learning – Step 3

 Loss function for learning algorithm where N is the

number of training tasks we collect

 Find 𝜙 that can minimize 𝐿 𝜙

 Using the optimization approach you know

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛

𝜙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜙

𝐿 𝜙

Now we have a learned “learning algorithm” F𝜙∗

If you know how to compute Τ𝜕𝐿 𝜙 𝜕𝜙

Gradient descent is your friend.

What if 𝐿 𝜙 is not differentiable?

Reinforcement Learning / Evolutionary Algorithm

15

Framework

16

cat dog

apple orange bike car

Training Tasks

F𝜙∗

Testing

Task

cat

𝑓𝜽∗

Learned

“Learning

Algorithm”

Task 1 Task 2

Train

TestWhat we really

care about

Related to the testing task

only need little labeled training data

𝑙1

apple orange

apple orange

𝐹𝜙

prediction

Training

Examples

Testing

Examples

𝑓𝜽∗

To compute the loss

Within-task Training

Within-task Testing

If your optimization method needs to

compute 𝐿 𝜙

Across-task training (Meta-training)

includes several within-task training

and testing

𝐿 𝜙 = ෍

𝑛=1

𝑁

𝑙𝑛

Outer Loop in “Learning to initialize”

Inner Loop in “Learning to initialize”

Framework

17

Support set

Query set

Framework

48

Across-task

Testing

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision

https://neptune.ai/blog/understanding-few-shot-learning-in-computer-vision

